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Abstract14

The relationship between the tropical cloud radiative effect (CRE) and tropical sur-15

face temperature variability on ENSO time-scales is investigated in pre-industrial con-16

trol simulations from the CMIP5 archive. The tropical CRE is binned according to mid-17

tropospheric vertical velocities and then regressed in frequency space versus tropical-mean18

surface temperatures. Low clouds play a leading role in the relationship between clouds19

and surface temperature variability, amplifying ENSO-induced surface temperature anoma-20

lies through thermodynamically-driven changes in the short-wave CRE. Changes in CRE21

driven by changes in the large-scale dynamics have a minor influence on surface temper-22

ature variability. It is shown that the regression co-efficients at ENSO frequencies be-23

tween the CRE in regions of moderate subsidence and of weak ascent, and tropical-mean24

surface temperatures are well correlated with models’ climate sensitivities, constituting25

a potential “emergent constraint” on climate sensitivity.26

1 Introduction27

There is a well established connection between ENSO events and global-mean sur-28

face temperature (GMST), with El Niño events causing an increase in GMST and La29

Niña events causing a decrease. The changes in GMST are driven primarily by sea sur-30

face temperature (SST) anomalies in the tropical Pacific, which warm or cool the entire31

troposphere above them depending on the phase and amplitude of the ENSO event. These32

signals are then rapidly communicated to other parts of the tropics, since the tropical33

atmosphere cannot sustain large temperature gradients [Sobel and Bretheron, 2000]. The34

warming or cooling of surface temperatures outside the tropical Pacific is more complex35

however, as the strength of the coupling between SSTs and the free troposphere above36

them has significant regional variations and so the surface temperatures of certain re-37

gions in the Indian and Atlantic oceans are not well correlated with ENSO variability38

[Chiang and Sobel , 2002].39

Clouds also play a role in the response of GMST to ENSO events, and their net40

effect on ENSO is determined by a complex interplay between reductions (increases) in41

low cloud cover in regions of mean subsidence and increases (reductions) in convective42

cloudiness in regions of mean ascent during El Niño (La Niña) events (e.g., Klein and43

Hartmann [1993]; Bony et al. [1997]; Park and Leovy [2004]; Radel et al. [2016]), with44
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the former amplifying surface temperature variability and the latter reducing it. Because45

the two effects partly cancel each other, it has proven difficult to untangle their relative46

contributions, though Lloyd et al. [2012] showed that the low cloud effect is the primary47

contributor to the difference between model feedbacks onto ENSO and those seen in ob-48

servations.49

Since low clouds are the source of much of the intermodel spread in Equilibrium50

Climate Sensitivity (ECS; e.g., Vial et al. [2013]), it is tempting to use their ENSO-induced51

variability to constrain their forced changes. However recent work has shown that cloud52

feedbacks are highly sensitive to the pattern of surface temperature change (Andrews et al.53

[2015]; Zhou et al. [2017]; Silvers et al. [2018]; Andrews and Webb [2018]), in particular54

whether the warming is focused in regions of mean ascent or in regions of mean subsi-55

dence, or in the extratropics. This is problematic for attempts to constrain forced changes56

in clouds from ENSO-induced changes, as the patterns of low cloud changes during ENSO57

events differ from what is seen in forced simulations (Zhu et al. [2007]). On the other58

hand, there is statistical evidence that cloud feedbacks on unforced variability are related59

to forced cloud feedbacks (Zhou et al. [2015]; Brient and Schneider [2016]; Colman and60

Hanson [2017]), suggesting that ENSO-induced cloud changes could be used to infer how61

clouds will change in a warmer world.62

This study addresses these two questions – the relationships between different cloud63

types and tropical surface temperatures, and whether cloud changes on ENSO time-scales64

can be used to infer forced cloud changes – by applying two analysis techniques to data65

from the pre-industrial control simulations in the fifth Climate Model Intercomparison66

Project (CMIP5) archive. The first is binning the cloud radiative effect (CRE, defined67

below) based on the pressure velocity at 500hPa (ω) of each grid point. This is a com-68

monly used technique for assessing the contributions of different cloud types to forced69

cloud changes in climate models (e.g., Bony et al. [2004]; Bony and Dufresne [2005]; Wyant70

et al. [2006]; Zhao et al. [2016]; Byrne and Schneider [2018]), and here permits the con-71

tribution of different cloud types to surface temperature variability on ENSO time-scales72

to be quantified.73

The second technique is frequency-dependent regressions, which Lutsko and Taka-74

hashi [2018] used to study the relationship between TOA fluxes and surface tempera-75

tures in data from the pre-industrial control simulations in the CMIP5 archive (see also76
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MacMynowski et al. [2011]). A frequency-dependent “sensitivity” can be defined for these77

unforced simulations using the regression co-efficients between CRE and surface temper-78

ature, and a strong correlation was found across models between these regression co-efficients79

and the models’ ECS values on time-scales of 2.5 to 3 years. This constitutes a poten-80

tial “emergent constraint” between the behavior of clouds on ENSO time-scales and mod-81

els’ responses to increased CO2 concentrations, though it was found that roughly 10082

years of data are required for a strong relationship to emerge.83

Besides the regression co-efficients, the frequency-dependent regressions also pro-84

vide information about the relative phase of the CRE and surface temperature. Lutsko85

and Takahashi found that, in the ensemble-median, the CRE is approximately 90◦ out86

of phase with tropical surface temperatures on ENSO frequencies. Naively, this implies87

that tropical clouds force surface temperature variability on these time-scales, but based88

on previous studies of the relationship between clouds and tropical surface temperatures89

on ENSO time-scales (Klein et al. [1999]; Lau and Nath [2001]; Zhu et al. [2007]; Zhou90

et al. [2017]), it was suggested instead that tropical clouds rapidly respond to SST anoma-91

lies in the equatorial Pacific and then amplify tropical-mean surface temperature anoma-92

lies generated by the local SST anomalies during ENSO events.93

Building on this work, the CRE in the pre-industrial control simulations is here de-94

composed into ω bins and then regressed in frequency space versus tropical-mean sur-95

face temperatures. This permits the relationships between different cloud types and trop-96

ical surface temperatures to be investigated as a function of frequency, though the fo-97

cus here is on ENSO time-scales (∼2-5 years). This decomposition can also be used to98

identify which cloud-types are responsible for the relationship between the regression co-99

efficients and the models’ sensitivities. A strong correlation across models is found be-100

tween the changes in CRE due to clouds in regions of weak ascent and weak to moder-101

ate subsidence on ENSO time-scales and the models’ ECS values, which constitutes a102

stricter emergent constraint on Earth’s ECS than that proposed by Lutsko and Taka-103

hashi.104

After describing the data and methods used in the study in section 2, the relation-105

ship between tropical-mean surface temperature variability and thermodynamic changes106

in CRE (changes independent of changes in the large-scale dynamics) is investigated in107

section 3, and then the relationship between tropical-mean surface temperature variabil-108
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ity and variability in CRE due to changes in the large-scale dynamics is investigated in109

section 4. Section 5 examines which cloud types are responsible for the relationship be-110

tween the regression co-efficients and the models’ ECS values seen by Lutsko and Taka-111

hashi, before conclusions are drawn in section 6.112

2 Data and Methods113

2.1 Data114

The analysis used monthly data from the pre-industrial control (“pi-control”) ex-115

periments with 18 models participating in the CMIP5 project (Supplementary Table 1).116

500 simulation years were used for each model and in cases where more than 500 years117

of data are available only the first 500 years were retained. The variables used in the anal-118

ysis were the vertical pressure velocity at 500hPa, surface air temperature, the SSTs, the119

TOA outgoing long-wave radiation, the TOA outgoing short-wave radiation, the TOA120

outgoing clear-sky long-wave radiation and the TOA outgoing clear-sky short-wave ra-121

diation. The incoming solar radiation was assumed to be fixed and the net CRE was com-122

puted as the net all-sky flux (long-wave + short-wave) minus the net clear-sky flux. Sim-123

ilarly, the short-wave (long-wave) CRE was computed as the all-sky short-wave (long-124

wave) flux minus the clear-sky short-wave (long-wave) flux.125

Estimates of the models’ ECS values were taken from Forster et al. [2013] and Ge-126

offroy et al. [2013]; except for the GFDL-CM3 and GFDL-ESM2G models, whose sen-127

sitivities were only estimated by Forster et al. [2013]; and the BNU-ESM model, whose128

sensitivity was only estimated by Geoffroy et al. [2013] (Supplementary Table 1). Com-129

parisons were also made with estimates by the same authors of the models’ feedback pa-130

rameter βF , where ECS = F2xCO2/βF and F2xCO2 is the radiative forcing due to a dou-131

bling of CO2 concentrations, and with estimates of the CRE-derived cloud feedback (βF,cloud)132

from Forster et al. [2013].133

Both studies estimated the βF and ECS values from the 4xCO2 experiments in134

the CMIP5 archive, but Forster et al. [2013] used the Gregory et al. [2004] method to135

estimate the values, whereas Geoffroy et al. [2013] estimated values as part of their it-136

erative fitting of an energy balance model. The two sets of estimates are highly corre-137

lated, with an r2 value of approximately 0.95. The Forster et al. [2013] estimates will138

be referred to as βF,1 and ECS1, and the Geoffroy et al. [2013] estimates as βF,2 and ECS2.139
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2.2 ω decomposition140

Following Bony and co-authors (Bony et al. [2004]; Bony and Dufresne [2005]), the141

data were binned according to their monthly-mean 500hPa vertical pressure velocity, ω,142

with a bin-size of 5hPa/day, as a way of isolating different regimes of the large-scale over-143

turning circulation. Only tropical data were included in the binning, with the tropics144

defined as 30◦S to 30◦N, though the results are not qualitatively sensitive to the defi-145

nition of the tropics or to the choice of bin size. After binning, annual-means were taken146

and the time-series were linearly de-trended to remove model drift, though note that some147

models have non-linear drift. Since the calculations are performed in frequency-space (see148

next section), they are not affected by regression dilution [Proistosescu et al., 2018], and149

it was found that taking annual-means reduced the intermodel spread in the results of150

the regressions somewhat.151

Tropical means can be taken by weighting the quantities in each bin by the prob-152

ability density of that bin and then integrating over all bins. For instance, the tropical-153

mean surface temperature T̄ is154

T̄ (t) =

∫ +∞

−∞
P (t, ω)T (t, ω)dω, (1)

where P (t, ω) is the distribution of ω, T (t, ω) is the mean surface temperature in that155

bin and t is measured in years. The ensemble-median values of the time-averaged prob-156

ability densities, [P (ω)], are shown in the left panel of Figure 1.157

The variability of the tropical-mean CRE (C̄(t)′, where C̄(t)′ = C̄(t) − [C̄]) can158

be decomposed into a “dynamic” component due to changes in the probability density159

of each bin (P (t, ω)′), a “thermodynamic” component due to changes in the relationship160

between CRE and vertical velocity (C(t, ω)′) and a non-linear component (Bony et al.161

[2004]; Byrne and Schneider [2018]):162

C̄ ′(t) =

∫ +∞

−∞
P (t, ω)′[C(ω)]dω +

∫ +∞

−∞
[P (ω)]C(t, ω)′dω +

∫ +∞

−∞
P (t, ω)′C(t, ω)′dω. (2)

The dynamic term represents changes in the CRE due to large-scale circulation changes;163

for instance due to the re-organization of convection during ENSO events (note however164

that any dynamic effects that are decoupled from the ω velocities, such as lower tropo-165

spheric mixing, are not included in this term, and instead make up part of the thermo-166

dynamic term). The second term represents changes in cloud amount or in cloud radia-167

tive properties under fixed dynamic conditions, while the non-linear term, which is small,168
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represents co-variations of the dynamic and thermodynamic changes, and will be ignored169

hereafter.170

The goal is to understand how different cloud-types are related to tropical-mean171

surface temperatures on ENSO time-scales and so the frequency-dependent regressions172

were performed between the tropical-mean surface temperature anomalies (T̄ ′) and the173

dynamic term, and between T̄ ′ and the thermodynamic term.174
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Figure 1. Left panel: Ensemble-median histogram of [P (ω)] for the 18 CMIP5 models an-

alyzed in this study. The error bars show ±1 standard deviation. Right panel: Regression of

P (t, ω)′ onto the Nino3.4 index for each of the models used in the study (light gray lines). The

thick line with the markers shows the ensemble-median of the regressions.
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2.3 Spectral analysis179

The spectral analysis follows the same procedure as Lutsko and Takahashi [2018],180

and is described in more detail in the Supplementary Text. The focus is on frequency-181

dependent regression co-efficients, which are calculated as182

τ(f) =
CTR(f)

PTT (f)
, (3)

where f is frequency, PTT is the power spectrum of global-mean surface temperature for183

a particular model and CTR is the cross-spectrum of surface temperature with a partic-184

ular TOA flux R (the Fourier transform of the cross-correlation between T and R). Since185

–7–



Confidential manuscript submitted to Geophysical Research Letters

τ is complex it must be separated into its amplitude (a) and phase (φ):186

a(f) =
|CTR(f)|
PTT (f)

, (4)

187

φ(f) = tan−1
[
Im{CTR(f)}
Re{CTR(f)}

]
, (5)

where τ = aeiφ. a ≥ 0 and values of a will be referred to as “amplitudes” as a short-188

hand for “amplitudes of the regression co-efficients”. The phase is always between -180◦189

and 180◦, with a phase of -180◦ being equivalent to a phase of 180◦, and positive phases190

are taken to mean that the surface temperature leads the TOA flux.191

To interpret the phases and amplitudes, note that if φ(f) = 0◦ then an increase192

in C(ω)′ corresponds to an increase in T̄ ′, and the CRE from that bin acts as a nega-193

tive feedback on surface temperature. Conversely if φ(f) = 180◦ then an increase in194

C(ω)′ corresponds to a decrease in T̄ ′, and the CRE from that bin acts as a positive feed-195

back on surface temperature. In both these cases, a(ω) can be interpreted as a feedback196

co-efficient. If φ(f) = ±90◦ then one variable is proportional to the derivative of the197

other, with the sign of the relationship ambiguous. For instance, dC(ω)′/dt = T̄ ′ and198

dT̄ ′/dt = −C(ω)′ will both produce a phase of +90◦. Physical reasoning must be used199

to differentiate between these two scenarios, with a(ω) = f−1 or f in the two cases, re-200

spectively. If the phase is not equal to 0◦, ±90◦ or 180◦ then T̄ ′ and C ′ both have com-201

ponents which are linearly related (and so have a phase of 0◦ or ±180◦) and components202

which are in quadrature (and so have a phase of ±90◦).203

Finally, the squared coherence between T and R was also estimated:204

Coh2TR(f) =
|CTR(f)|2

PTT (f)PRR(f)
, (6)

which gives a sense of the robustness of the relationship between T and R at a partic-205

ular frequency.206

3 Regressions Between Thermodynamic Variability and Tropical-Mean215

Surface Temperature216

The results of the regressions between C(ω)′ (the binned net CRE) and T̄ ′ are sum-217

marized in the left panels of Figure 2. The values shown are averaged over the 1/2.5 years−1218

to 1/3 years−1 frequency band, since Lutsko and Takahashi demonstrated that this band219

can be used to predict the models’ sensitivities, however the results are similar using a220
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Figure 2. Top left panel: squared-coherence between T̄ ′ and C(ω)′ for ω between -

100hPa/day and 100hPa/day, averaged over frequencies of 1/2.5 years−1 to 1/3 years−1. The

individual models are in gray and the ensemble median is shown by the thick black line. The

ensemble-median coherences for the regressions with the long-wave CRE (L(ω)′) and the short-

wave CRE (S(ω)′) are shown in the thick blue and red lines, respectively. Middle left panel:

same but for the phase between T̄ ′ and C(ω)′. Positive phase means that surface temperature

leads the TOA flux. Bottom left panel: same but the amplitudes between T̄ ′ and C(ω)′ are

shown. Right panels: same but for the regressions between P (ω′) and T̄ ′.
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wider range of frequencies in the ENSO range (Supplementary Figure 1). Individual model221

results are in light gray and the ensemble-median values are in black.222

All three variables demonstrate the importance of the -10hPa/day to 25hPa/day223

bins for the relationship between tropical CRE and tropical surface temperatures. The224

coherence is generally low (0.2-0.4 in the ensemble-median), except at these velocities,225
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where it reaches values of more than 0.6 in the ensemble-median at 5hPa/day. Similarly,226

although the phase is close to +90◦ at all velocities, the intermodel spread is smallest227

for these velocities, with all but two of the models close to +90◦. The amplitudes are228

also largest for these regimes, with a maximum at 10hPa/day of about 0.06 Wm−2K−1229

(note that the values of a have been weighted by [P (ω)]).230

As in Lutsko and Takahashi, the 90◦ phase difference for the regions of weak as-231

cent and of weak-to-moderate subsidence can be interpreted as representing clouds am-232

plifying ENSO-induced surface temperature anomalies, with low cloud cover reduced dur-233

ing warm El Niño events, amplifying the warming of tropical-mean surface temperatures.234

Figure 3 supports this interpretation by showing lag-regressions between the tropical CRE235

averaged over the -10 to 25hPa/day bins and tropical-mean surface temperatures (top236

left panel); between the tropical CRE in these regions and the Nino3.4 index in the mod-237

els (top right panel); between the Nino3.4 index and tropical-mean surface temperatures238

(bottom left panel) and between the CRE and the cloud cover in these regions (bottom239

right panel). Note that linearly de-trended, monthly data were used to estimate these240

lag-regressions.241

In line with the interpretation given above, the CRE is approximately in phase with242

the Nino3.4 index and these are anti-correlated, with a minimum correlation of around243

-0.4 in the ensemble-median. The CRE is also anti-correlated with tropical-mean tem-244

perature, but leads this by about four months in the ensemble-median. As expected, the245

Nino3.4 index is strongly correlated (co-efficient ∼0.9) with tropical-mean surface tem-246

perature, and leads this by about three months in the ensemble-median. These relation-247

ships support the claim that the low cloud CRE quickly responds to ENSO-induced SST248

anomalies in the equatorial Pacific and then amplifies tropical-mean surface tempera-249

ture anomalies, which lag by several months. The CRE in these regions is highly cor-250

related with their cloud cover (bottom right panel), suggesting that tropical low cloud251

CRE variability is mainly due to changes in cloud cover, as opposed to changes in cloud252

thickness or depth.253

To give a sense of the spatial structure of the ENSO-induced changes in tropical254

clouds, Supplemental Figure 2 shows regressions of the monthly estimated inversion strength255

(EIS, Wood and Bretherton [2006]), a proxy for low clouds and their thermodynamic en-256

vironment, onto the Nino3.4 index for six of the models used in this study. There are257
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EIS changes throughout the tropics during ENSO events, and the panels also include boxes258

highlighting regions which have been identified as being important for low clouds [Wood ,259

2006]. This reveals that the net low cloud CRE response results from a cancellation be-260

tween some regions with increases in low clouds and other regions with decreases, though261

the net effect is always for a reduction in low cloud cover. Understanding the differences262

between these regions and comparing how they behave in models and in observations is263

beyond the scope of this article, but will be required to fully understand the relation-264

ship between clouds and ENSO events.265

The blue and red lines in Figure 2 show the results for the regressions with the long-266

wave and short-wave CREs (L(ω)′ and S(ω)′, respectively) with only the ensemble-median267

values shown for clarity. The regressions for S(ω)′ generally resemble the C(ω)′ regres-268

sions: the phase is always near 90◦ and the values of a are very similar, though they peak269

at about 30hPa/day instead of at 10hPa/day. The coherence is weaker than for the net270

CRE, with a maximum of about 0.5 at 5hPa/day. Zelinka et al. [2016] showed that low271

cloud cover is better correlated with net CRE than with short-wave CRE (which includes272

the CRE of high clouds), explaining the weaker coherence for S(ω)′.273

In contrast, there is little resemblance between the long-wave regressions and the274

net CRE regressions. The phase is always close to zero, except for a few values at ve-275

locities close to 0hPa/day when it approaches +90◦. There is a small peak in the am-276

plitudes at about 30hPa/day, but otherwise the amplitudes are small, while the coher-277

ence is weak for all bins. This peak in regions of strong subsidence is unexpected, since278

these regions are dominated by low clouds, which have a weak long-wave effect (Bony279

et al. [2004]), and the long-wave amplitudes appear to actually cancel the short-wave am-280

plitudes somewhat, so that the amplitudes for the net CRE are largest in regions of rel-281

atively weak subsidence.282

In the ensemble-median, the longwave CRE is roughly in phase with T̄ ′ in these283

regions of strong subsidence, suggesting that it is acting as a negative feedback on tem-284

perature variability. But this is the result of cancellation between a wide spread in phases285

across the individual models (Supplementary Figure 3), making it difficult to interpret286

the reason for this peak. Lag correlations are also inconclusive, as the correlation between287

the low cloud long-wave CRE and tropical-mean surface temperature is very weak (not288
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shown). Clarifying the effect of the long-wave CRE of low clouds on surface tempera-289

ture variability will require focused modelling work.290
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Figure 3. Top left panel: lag correlations between tropical-mean surface temperature (R)

and tropical CRE averaged over -10hPa/day to 25hPa/day. Positive lag means that temperature

leads the CRE. The individual models are in gray and the ensemble median is shown by the thick

black line. Top right panel: same for the Nino3.4 index and tropical CRE in the same regions.

Bottom left panel: same for the Nino3.4 index and tropical-mean temperatures. Positive lag

means that the temperature leads the Nino3.4 index. Bottom right panel: same for tropical CRE

and tropical cloud cover in th same regions. Positive lag means the cloud cover leads the CRE.

The Nino3.4 index was calculated by averaging SSTs in the Nino3.4 box (120◦W-170◦W and 5◦S-

5◦N), removing the mean and dividing by the standard deviation, and the lag correlations used

de-seasonalized and de-trended monthly data from the models.
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4 Regressions Between Dynamic Variability and Tropical-Mean Sur-301

face Temperature302

Figure 3 repeats Figure 2, but for the regressions between P (ω)′ and T̄ ′. The re-303

lationship between these is weak, as the coherence and amplitude are both low at almost304
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all frequencies and there is much intermodel spread in the coherence and the phase. There305

is a weak peak in the amplitudes and in the coherence at about 10hPa/day, however, and306

the phase is close to 90◦ in the ensemble median at 10hPa/day. So although the dynamic307

variability is in general not an important component of the relationship between cloud308

fluxes and surface temperature variability on ENSO time-scales, it may play a role in309

regions of weak subsidence.310

The minor role of dynamics in driving CRE variability is partly explained by the311

right panel of Figure 1, which shows the regressions of P (ω)′ onto the Nino3.4 index for312

each model. The regressions exhibit very different behaviors across the models: in some313

P (ω)′ is enhanced between about 0 and 40hPa/day and reduced everywhere else, while314

in others there is a shift in the distribution, as P (ω)′ is reduced in regions of weak sub-315

sidence and enhanced in regions of strong subsidence. In all of the models, however, the316

largest values of the projections are only 1-5% of the climatological values of [P (ω)]. So317

although there may be considerable re-organization of the convection in space during ENSO318

events, the relative fractions of the different regimes do not exhibit large temporal vari-319

ations in the models.320

Another reason for the small role of dynamics is the roughly linear relationship be-321

tween CRE and ω: if this relationship were perfectly linear then, over a large enough re-322

gion, any reorganisation of the circulation that conserved mass would not change the CRE323

(Wyant et al. [2006]; Byrne and Schneider [2018]).324

5 Comparing with Climate Sensitivity Estimates325

As in Lutsko and Takahashi, the amplitudes can be thought of as frequency-dependent326

internal variability sensitivities, and so regressing them against the models’ climate sen-327

sitivities is a way of investigating whether the models’ internal variability is correlated328

with their sensitivities to external forcing. This is shown in Figure 4, which plots the r2329

values for correlations between the amplitudes for C(ω)′, averaged over the 1/2.5 to 1/3330

years−1 frequency band, and the estimates of the models’ βF and ECS values.331

The strongest correlations are again in the -10hPa/day to 25hPa/day bins, with332

r2 values of up to 0.6, and are weaker with the ECS estimates than with the βF esti-333

mates. Decomposing into the short-wave and long-wave components demonstrates that334

most of this correlation comes from the short-wave (bottom panel of Figure 4), though335
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adding the long-wave improves the relationship somewhat [Zelinka et al., 2016]. Plot-336

ting the values of a(f, ω), averaged over the -15 to 25hPa/day bins, against the sensi-337

tivity estimates shows that models with larger values of a have larger climate sensitiv-338

ities (smaller values of βF , Supplementary Figure 4). That is, models in which clouds339

in regions of weak subsidence and weak ascent amplify tropical mean surface temper-340

ature variability more strongly on ENSO time-scales are more sensitive to external forc-341

ings. Intuitively, this is what we would expect: models which experience a larger reduc-342

tion in low clouds when tropical surface temperatures warm have larger climate sensi-343

tivities.344

Similar results are obtained when the correlations are performed with the βF,cloud345

estimates (purple lines in Figure 4) and estimates of the tropical-mean CRE feedback346

(brown lines in Figure 4, these are calculated using the same procedure as Forster et al.347

[2013] but only using tropical CRE values). However, the correlations are better for the348

estimates of the total feedback than for the estimates of the CRE feedback, which sug-349

gests that the highest r2 values for the total feedback may be somewhat fortuitous. The350

CRE feedback estimates also do not account for the effect cloud masking, which may af-351

fect the CRE feedback and the regression co-efficients differently, and may cause the re-352

gression co-efficients to be more strongly correlated with the total feedbacks. The am-353

plitudes from the regressions with P (ω)′ are not well correlated with the sensitivity es-354

timates (Supplementary Figure 5), as expected from the previous section.355

6 Conclusion361

The results presented here demonstrate that the relationship between tropical-mean362

surface temperature variability and tropical CRE on ENSO time-scales is dominated by363

the thermodynamic variability of clouds in regions of weak ascent and weak-to-moderate364

subsidence (ω ∼ −10 to 30hPa/day). This variability is 90◦ out of phase with surface365

temperature, and amplifies ENSO-induced surface temperature variability through re-366

ductions (enhancements) of low cloud cover during warm (cold) El Niño (La Niña) events367

(see also Klein et al. [1999]; Lau and Nath [2001]; Zhu et al. [2007]; Zhou et al. [2017]).368

A caveat to this picture is that the long-wave CRE of clouds in regions of strong sub-369

sidence (≥ 20hPa/day) partly cancels these clouds’ short-wave CRE, so that the net CRE370

in these regions has a smaller effect on surface temperature variability than clouds in re-371

gions of weaker descent. It is difficult to determine why the long-wave CRE in regions372
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Figure 4. Top panel: r2 values for regressions between the four sets of sensitivity estimates,

the estimates of the CRE feedback and the estimates of the tropical CRE feedback, and the am-

plitudes, averaged over frequencies of 1/2.5 years−1 to 1/3 years−1, for the regressions between

T̄ ′ and C(ω)′. Middle panel: same for the regressions between T̄ ′ and L(ω)′. Bottom panel: same

for the regressions between T̄ ′ and S(ω)′.
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357
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359

360

of strong subsidence has this effect because of the large intermodel spread in the phase,373

though it is worth noting that reductions in low cloud cover are often associated with374

an increase in the flux of water vapor from the boundary layer to the free atmosphere,375

which promotes the formation of mid/high clouds. In general CRE variability due to changes376

in the large-scale dynamics during ENSO events does not impact surface temperature377

variability, despite the substantial re-organization of convection in space during ENSO378

events, but it does seem to play a minor role in regions of weak subsidence (∼10hPa/day).379
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The frequency-dependent regression coefficients for the regressions between the net380

CRE in these regions and tropical-mean surface temperatures are well correlated (r2 >381

0.6) across models with the models’ sensitivities (Figure 4), with larger regression co-382

efficients corresponding to models with larger climate sensitivities (Supplementary Fig-383

ure 4). In other words, models which experience larger reductions (enhancements) of low384

cloud cover during warm (cold) El Niño (La Niña) events have larger ECS values. This385

constitutes a stricter emergent constraint than that proposed by Lutsko and Takahashi386

[2018], as it depends on the CRE in particular dynamical regimes of the tropics, rather387

than on the global-mean CRE, and agrees with the analysis by Vial et al. [2013], who388

showed that regions of weak ascent and weak-to-moderate subsidence (ω = −10 to 30hPa/day)389

are largely responsible for the spread in ECS values in the CMIP5 models. A caveat is390

that it has been shown previously that O(100 years) of data are needed to accurately391

estimate ENSO spectra (Wittenberg [2009]; Lutsko and Takahashi [2018]), and so the392

emergent constraint developed here is of limited practical use for the near-term.393

These results add to our picture of how clouds influence surface temperature vari-394

ability on ENSO time-scales and also to the growing body of literature showing that, de-395

spite substantial differences in the patterns of tropical cloud changes during ENSO events396

and in response to increased CO2 concentrations, there is a strong relationship across397

models between the CREs resulting from these cloud changes (e.g., Zhou et al. [2015];398

Brient and Schneider [2016]; Colman and Hanson [2017]; Lutsko and Takahashi [2018]).399

By focusing on the 1/2.5 to 1/3 years−1 frequency band, this study clearly demonstrates400

that this relationship comes from ENSO-induced cloud changes, while the decomposi-401

tion of the fields into ω bins allows the key cloud regimes responsible for this relation-402

ship to be identified. Future work involving focused modelling work as well as observa-403

tional investigations are required to further understand how changes in CRE in regions404

of weak ascent and moderate-to-weak subsidence influence tropical surface temperature405

anomalies on ENSO frequencies, and how these changes relate to the CRE feedbacks seen406

in climate change experiments.407
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