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Abstract16

The rate of transient warming is determined by a number of factors, notably the ra-17

diative forcing from increasing CO2 concentrations and the net radiative feedback. Uncer-18

tainty in transient warming comes from both the uncertainty in each factor and from the19

warming’s sensitivity to uncertainty in each factor. An energy balance model is used to20

untangle these two components of uncertainty in transient warming, which is shown to be21

most sensitive to uncertainty in the forcing and not to uncertainty in radiative feedbacks.22

Additionally, uncertainty in the efficacy of ocean heat uptake is more important than un-23

certainty in the rate of ocean heat uptake. Three further implications are: (1) transient24

warming is highly sensitive to uncertainty in emissions; (2) caution is warranted when ex-25

trapolating future warming trends from short-lived climate perturbations; and (3) climate26

models tuned using the historical record are highly sensitive to assumptions made about27

the historical forcing.28

1 Introduction29

Predicting the warming of global-mean surface temperature in response to increased30

CO2 concentrations is one of the central goals of climate science. A convenient and ef-31

fective way of quantifying future warming is through climate sensitivity, which can be32

defined in several ways. The equilibrium climate sensitivity (ECS) is the equilibrated re-33

sponse of global-mean surface temperature to a doubling of CO2 concentrations, and is34

equal to the forcing due to doubling CO2 (F) divided by the net radiative feedback which35

brings the system back into equilibrium (λ):36

ECS = F/λ. (1)

The ECS is a measure of the equilibrium state of the climate system, however anthro-37

pogenic climate change is a transient perturbation. A useful metric of transient warming38

is the transient climate response (TCR): the response of global-mean surface temperature39

after 70 years of increasing CO2 concentrations by 1% per year (i.e., after CO2 concentra-40

tions have doubled). The TCR can be scaled for a given emission scenario, and provides41

an estimate of future warming on a timescale at which human action is possible to limit42

or mitigate further warming. Recently the closely related T140, the warming after 14043

years of increasing CO2 concentrations by 1% per year, has also been used to quantify44
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the difference in transient warming after one doubling compared to after two doublings of45

CO2 concentrations (Gregory et al. [2015]; Grose et al. [2018]).46

Large uncertainties in these measures of Earth’s climate sensitivity persist, with the47

IPCC AR5 report giving “likely” ranges of 2.5-4.5K for the ECS and 1.0-2.5K for the48

TCR [Stocker, 2013], limiting our ability to predict future warming. Much effort has gone49

into reducing these uncertainties, with little effect. We argue here that progress in nar-50

rowing these uncertainty ranges can be made by focusing more carefully on the sources51

of uncertainty in each of these metrics. Specifically, uncertainty in a given metric can be52

decomposed into two components: (1) the uncertainty in each factor which determines53

that metric, and (2) the sensitivity of the metric to uncertainty in each factor [Hamby,54

1994]. This second component of uncertainty has received little attention from the cli-55

mate sensitivity community, as the focus has been on constraining the most uncertain fac-56

tors. However, a factor may be highly uncertainty but contribute little to uncertainty; con-57

versely, identifying the factors to which future warming is most sensitive can reveal the58

most promising paths for narrowing the uncertainty in Earth’s climate sensitivity.59

In the case of the ECS, equation 1 makes clear that the uncertainty is due to the60

relative uncertainties in F and in λ−1. The small number of factors responsible for un-61

certainty in the ECS comes from the steady-state definition of ECS, so that there are no62

time-dependent factors. Uncertainties in λ−1 and F are linearly related to uncertainty in63

the ECS, and the larger relative uncertainty in λ−1 (Figure 1a) justifies the intense focus in64

the climate science community on better constraining the net radiative feedback.65

By contrast, the uncertainty in transient warming (quantified by TCR, T140 or any66

other metric of transient warming) is determined by several factors, including the radiative67

forcing that causes the climate response, the radiative feedbacks which ultimately bring68

the climate system back to equilibrium and the rate at which heat is transferred from the69

surface ocean to the deep ocean (Gregory [2000]; Dufresne and Bony [2008]; Held et al.70

[2010]; Geoffroy et al. [2012]). In this study, we analyze a widely used two-box energy71

balance model (EBM) of Earth’s climate system to quantify the sensitivity of transient72

warming to uncertainty in each of these factors as a function of time-scale. Our analysis73

includes both theoretical considerations (section 2) and analysis of data from a set of mod-74

els participating in the Fifth Climate Model Intercomparison Project (CMIP5, section 3).75
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Both analyses demonstrate that, even after 140 years, transient warming is most sen-76

sitive to uncertainty in the radiative forcing and not, as is often assumed implicitly, to sen-77

sitivity in the radiative feedbacks. This implies that the most effective way of reducing78

uncertainty in transient warming is to reduce uncertainty in the radiative forcing, rather79

than focusing on the radiative feedbacks. In other words, reducing the relative uncertainty80

in F by 1% would reduce the uncertainties in the TCR and the T140 substantially more81

than reducing the relative uncertainty in λ by 1%.82

Our results have several other important implications. First, transient warming is83

highly sensitive to uncertainties in the carbon cycle feedbacks which determine the frac-84

tion of emitted CO2 that is removed from the atmosphere. For this reason, uncertainty in85

future emissions can easily overwhelm uncertainties in the climate system’s radiative feed-86

backs. Second, the changing contributions of the various factors to uncertainty on differ-87

ent time-scales suggest caution when extrapolating the climate system’s response to short-88

term perturbations, such as volcanic eruptions, to sustained climate perturbations, such as89

long-term CO2 increases. Finally, our results imply that the radiative feedbacks in models90

that are “tuned" by fitting to the historical record are strongly controlled by the assumed91

historical forcing. As increasing numbers of models include a representation of the aerosol92

indirect effect, which increases the spread in the assumed historical forcing, this suggests93

that the intermodel spread in the net radiative feedback will be substantially larger in the94

next generation of climate models.95

2 Theoretical Analysis of a Two-Box EBM102

In order to evaluate the causes of uncertainty in transient warming, we analyze a103

widely used EBM consisting of two boxes, one representing the combined land surface104

and ocean mixed-layer and the other representing the deep ocean (Gregory [2000]; Held105

et al. [2010]; Geoffroy et al. [2013a]; Geoffroy et al. [2013b]; Gregory et al. [2015]). This106

EBM can reproduce the evolution of climate models’ global-mean surface temperature in107

simulations in which CO2 is either instantaneously doubled or in which CO2 is increased108

by 1% per year (Supplemental Figure 1), and is written as:109

c
dT1(t)

dt
= ∆F(t) − λT1(t) − εγ(T1(t) − T2(t)), (2)

110

c0
dT2(t)

dt
= γ(T1(t) − T2(t)), (3)
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Figure 1. a) The relative uncertainties in the six parameters of the EBM (blue bars), based on fitting the

EBM to the 18 CMIP5 models, as well as the uncertainties in the ECS and the TCR (orange bars). b) Box-

and-whisker plots showing the distributions of TCR from the initial EBM integrations. The boxes show ±one

standard deviation, the horizontal lines show the mean and the whiskers denote ±two standard deviations.

The round markers show the models’ TCRs. c) Same as panel b) but the EBM integrations are performed

assuming the same relative uncertainty in each parameter.

96

97

98

99

100

101

with c the heat capacity of the surface box, T1 the surface temperature anomaly, λ the net111

radiative feedback, ε the efficacy of ocean heat uptake, γ the rate of heat exchange be-112

tween the surface and deep ocean, T2 the temperature anomaly of the deep ocean and c0113

the heat capacity of the deep ocean. The efficacy term was first proposed by Winton et al.114

[2010] as a means of accounting for the fact that the sensitivity of transient warming to115

ocean heat uptake differs from the sensitivity to radiative forcing. Including ε allows the116

EBM to capture the time-dependence of the climate feedback and ocean heat uptake seen117

in climate model simulations.118

∆F is the radiative forcing due to increasing CO2 concentrations at time t, which119

can be approximated as ∆F(t) = Fln(C(t)/C0) (Myhre et al. [1998]; Etminan et al. [2016]),120

with C(t) the carbon dioxide concentration at time t and C0 the pre-industrial atmospheric121

concentration of CO2. For a 1% per year increase in atmospheric CO2 concentrations this122
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leads to123

∆F(t) ≈
Ft

70years
. (4)

The TCR is equal to T1 after 70 years of increasing CO2 concentrations by 1% per year124

and T140 is equal to T1 after 140 years of increasing CO2. In equilibrium the derivatives125

of T1 and T2 vanish and it can be readily verified that the ECS= F/λ.126

Using this approximation for the forcing, the EBM can be solved for T1 and T2 (Ge-127

offroy et al. [2013a]) to give128

T1 =
F

70λ

[
t − τf a f (1 − e−t/τ f ) − τsas(1 − e−t/τs )

]
, (5)

129

T2 =
F

70λ

[
t − φ f τf a f (1 − e−t/τ f ) − φsτsas(1 − e−t/τs )

]
, (6)

where τf and τs are the time-scales of a fast mode of response and a slow mode of re-130

sponse, respectively, and a f and as are the contributions of the fast and slow modes to the131

heat uptake temperature TH (t) = ECS − T1(t). Expressions for the τs and the as are given132

in Supplemental Table 1.133

Apart from the linear dependence on F, the relationships between uncertainty in134

the other five free parameters in the EBM (λ, γ, ε , c and c0) and uncertainty in transient135

warming are opaque in this setting. More simply, the EBM can be transformed to fre-136

quency space and solved for T1, giving:137

T̂1 =
ω

70
×

F
λ + icω + εγ (1 − γ/(ic0ω + γ))

, (7)

where the overhat denotes a Fourier transform, ω is frequency and we assume that the six138

co-efficients are independent of frequency. ω is the inverse of the period P, so that low139

frequencies (small ω) correspond to long time-scales, and vice-versa. The absolute value140

of T̂1 is141

|T̂1 | ≈
ωF
70
×

√√√√ 1[
λ + εγ

(
1 − γ2

γ2+c2
0ω

2

)]2
+ ω2c2 + 2ωcc0ε

γ2+c2
0ω

2 + c2
0ω

2ε2/(γ2 + c2
0ω

2)2
, (8)

where a strong dependence of |T̂1 | on one of the six variables means that uncertainty in142

that variable has a large impact on the uncertainty of |T̂1 |. For instance, the linear rela-143

tionship with F means that transient warming is sensitive to uncertainty in F on all time-144

scales.145

Although it may appear complicated, equation 8 simplifies on different time-scales,146

allowing the differing contributions of λ, γ, ε , c and c0 to uncertainty in transient warm-147

ing on these time-scales to be understood. First, we define “long" times-scales as ω ≤148
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γ/c0 B ωL , or t > PL = c0/γ. The time-scale PL is the time-scale at which the deep149

ocean equilibrates. For time-scales much shorter than this, when ω >> ωL (or t << PL)150

the expression for |T̂1 | reduces to151

|T̂1 | ≈
ωF
70
×

√
1

(λ + εγ)2 + c2ω2 . (9)

At these time-scales the deep ocean has not warmed up substantially (T2 ≈ 0), and uncer-152

tainties in λ, c, ε and γ all make substantial contributions to the total uncertainty in |T̂1 |.153

However, because λ, ε , γ and c are all in the denominator, their uncertainties compen-154

sate, such that F is generally the largest contributor to uncertainty. Even if λ were zero,155

for instance, the warming at these frequencies would be finite, though the ECS would be156

infinite. The exception is very high frequencies, when small differences in c can result in157

large changes in |T̂1 |.158

We then define a fast time-scale as ωH = (λ + εγ)/c (or PH = c/(λ + εγ)), so that159

the effect of the mixed-layer heat capacity is negligible for ωL << ω < ωH . In other160

words, it is only at frequencies higher than ωH that uncertainties in c have a substantial161

impact on uncertainty in |T̂ |. The period PH corresponds to the time-scale on which the162

upper ocean box equilibrates in the absence of warming of the deep ocean ( dT1
dt ≈ 0 and163

T2 ≈ 0). So ωH separates the ultra-high frequency (ω > ωH , or t < PH ) regime from the164

high frequency regime (ωL << ω < ωH , or PL >> t > PH ).165

As ω starts to approach ωL , the approximation in equation 9 is no longer accurate,166

as there is warming of the deep ocean (T2 > 0). In this intermediate frequency regime167

equation 8 can be approximated as168

|T̂1 | ≈
ωF
70
×

√√√√ 1[
λ + εγ

(
1 − γ2

γ2+c2
0ω

2

)]2
+ c2

0ω
2ε2/(γ2 + c2

0ω
2)2

. (10)

The c0ω term is now key: as frequency decreases, this term gets smaller, so that 1 −169

γ2

γ2+c2
0ω

2 goes to zero, as does the last term in the denominator. Thus the contributions of ε170

and γ decrease with frequency in this regime.171

Finally, on long time-scales (ω < ωL , or P > PL), after the deep ocean has equili-172

brated with the surface mixed layer (T1 ≈ T2), the contributions of the ocean heat uptake173

terms, γ and ε , are negligible, and uncertainty in T̂1 is mostly determined by F and λ, as174

for the ECS:175

|T̂1 | ≈
F
λ
. (11)
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In summary, equation 8 can be used to separate transient warming into four regimes:176

the ultra-high frequency regime (ω > ωH ), the high frequency regime (ωH > ω >> ωL),177

the intermediate frequency regime (ω ∼ ωL) and the low frequency regime (ωL > ω).178

ωH separates the ultra-high frequency and high frequency regimes, while the transition179

between the high frequency and intermediate frequency regimes occurs once there has180

been substantial warming of the deep ocean. Using the CMIP5 ensemble-mean values181

(see following section and Supplemental Table 2) gives ωH ∼ 4 years−1 and ωL ∼160182

years−1. Furthermore, defining “substantial warming" of the deep ocean as occurring183

when γ ∼ 0.1c0ω gives a time-scale of 16 years separating the high frequency and in-184

termediate frequency regimes.185

Working in frequency space also makes clear the differences in the contributions of186

ε and γ. In equations 9 and 10, ε always damps |T̂1 |, so that larger ε results in smaller187

|T̂1 | at all frequencies. However, while larger γ makes εγ larger, damping the warming, it188

also makes the terms 1 − γ2

γ2+c2
0ω

2 and c2
0ω

2ε2/(γ2 + c2
0ω

2)2 smaller, enhancing the warm-189

ing. So the rate of ocean heat uptake acts as both a positive feedback and a negative feed-190

back on transient temperature increases, and we can expect uncertainty in ε , which always191

damps temperature increases, to contribute more to uncertainty in |T̂1 | than uncertainty in192

γ.193

These regimes are closely related to the “single-layer", “zero-layer" and “two-layer"194

regimes identified by Gregory et al. [2015]. In the single-layer regime there is no warming195

of the deep ocean, and the upper layer has not equilibrated with the forcing (T2 = 0 and196

dT1/dt , 0), so that equations 2 and 3 reduce to a single equation:197

c
dT1(t)

dt
≈ ∆F(t) − (λ + εγ)T1(t), single-layer, (12)

In the zero-layer regime the upper layer has equilibrated and the deep ocean has still not198

experienced warming (T2 = 0 and dT1/dt = 0), so that equation 12 becomes199

0 ≈ ∆F(t) − (λ + εγ)T1(t), zero-layer. (13)

These two regimes correspond to our ultra-high frequency and high frequency regimes,200

with the boundary between them again determined by the frequency ωH . Finally, Gregory201

et al.’s two-layer regime includes warming of the deep ocean, assuming that the surface202

mixed-layer equilibrates much faster than the deep ocean so that dT1/dt = 0:203

0 ≈ ∆F(t) − λT1(t) − εγ(T1(t) − T2(t)), double-layer. (14)
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Our low frequency regime is obtained at the time-scales on which the surface mixed-layer204

and the deep ocean have roughly equilibrated (T1 ≈ T2), so that equation 14 reduces to205

∆F = λT1.206

Comparing the single-layer and zero-layer cases again shows that the dependence207

on c drops out on intermediate time-scales. Furthermore, except for the equilibrated state,208

when T1 = T2, the “climate resistance" (λ+εγ, Gregory and Forster [2008]) is non-zero be-209

cause of heat transfer to the deep ocean, and so T1 is less sensitive to λ than to F. How-210

ever these approximations do not make clear the ambiguous dependence of T1 on γ, nor211

the differing contributions of γ and ε .212

3 CMIP5 Data Analysis213

To make the contributions of the different factors to uncertainty in transient warming214

quantitative, we have fit equations 2 and 3 to simulations with 18 climate models partici-215

pating in the fifth Climate Model Intercomparison Project (CMIP5), following the two-step216

procedure of Geoffroy et al. [2013a] (see Supplemental Text 1 and Supplemental Table217

2). The relative uncertainty in each parameter, here defined as the standard deviation of218

the intermodel spread divided by the ensemble-mean, is shown in Figure 1a. The largest219

relative uncertainty is in c0, followed by λ and then γ, ε , F and finally c. We note that220

correlations between the variables are generally weak, except for λ and λ, which have an221

r2 value of 0.37 (Supplemental Table 3).222

The distributions for the parameters from the fits can be used to analyze the sen-223

sitivity of transient warming, quantified by the TCR, to uncertainty in each parameter,224

allowing us to identify the main sources of uncertainty in transient warming and, more225

importantly, to interrogate the sensitivity of transient warming to uncertainty in each pa-226

rameter. To do this, we performed a number of integrations with the EBM in which CO2227

concentrations are increased at 1% per year for 140 years. In each integration, the param-228

eters were fixed at their ensemble means, except for one parameter, x, which was set to229

either x̄, x̄ + std(x), x̄ − std(x), x̄ + 2std(x), or x̄ − 2std(x); where the overbars denote230

ensemble means and std(x) is the standard deviation of x across the ensemble. With six231

parameters for x, this made 25 integrations in total, and we thus mapped out the sensi-232

tivity of the TCR to uncertainty in each parameter, assuming that the uncertainty in each233
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parameter is normally distributed. In other words, we used these integrations to approxi-234

mate the functions TCR′x = f (x ′), where ′ denotes an uncertainty and x ∈ {F, λ, γ, ε, c, c0}.235

The results of these integrations, shown in Figure 1b, demonstrate that the net ra-236

diative feedback λ produces the largest range of TCR values, followed by the forcing F.237

Uncertainty in the rate of ocean heat uptake γ and the ocean heat uptake efficacy ε also238

contribute a substantial amount of spread, while the contributions of the heat capacities239

are negligible, despite the large relative uncertainty in c0. However, this analysis combines240

the two components of uncertainty – the uncertainty in each parameter and the sensitivity241

of T1 to each parameter. For example, the relative uncertainty in λ is nearly three times242

as large as the relative uncertainty in F (∼32% compared to ∼12%), yet the contribution243

of F to the uncertainty in the TCR is almost as large as that of λ. Thus in order to inves-244

tigate the sensitivity of T1 to uncertainty in each parameter, the EBM integrations were245

repeated assuming that all the parameters have the same relative uncertainty as λ. That is,246

the standard deviation of each of the other five distributions was set equal to 0.32 times247

the mean of the distribution, so that x ′ is the same for all x. This new analysis reveals248

that the TCR is twice as sensitive to uncertainty in F as it is to uncertainty in λ (Figure249

1c). The other parameters are generally similar to before.250

So although the net radiative feedback λ is the largest source of uncertainty in the251

TCR, this is only because the relative uncertainty in λ is three times as large as the rel-252

ative uncertainty in F. Agreeing with the analysis in the previous section, the EBM in-253

tegrations again demonstrate that the TCR is more sensitive to uncertainty in the forc-254

ing than to uncertainty in the feedbacks, so that a small reduction in the uncertainty of F255

is equivalent to a much larger reduction in the uncertainty of λ. Put another way, if the256

uncertainty in F were as large as the uncertainty in λ the spread in TCR across models257

would be ∼0.5-3.5K, instead of 1-2.5K. We also note that the TCR’s sensitivity to ε is258

larger than its sensitivity to γ, though both are smaller than the sensitivity to the feedback259

parameter.260

Taking this further, Figure 2 shows the ratio of the sensitivity of T1 to uncertainty in261

each of the parameters apart from F divided by the sensitivity of T1 to uncertainty in F,262

as a function of time. Ratios smaller (larger) than one indicate that the sensitivity of T1 at263

time t to F is larger (smaller) than to the other considered quantity. The sensitivity to λ264

increases with time relative to the sensitivity to F (dotted line), but even after 140 years265
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the ratio is less than 0.8. It is only when the system has fully equilibrated – when T1 =266

ECS – that the sensitivity to λ is the same as to F. The sensitivities to γ and ε decrease267

after about 20 years, approximately equal to the time-scale estimated in the previous sec-268

tion for when the deep ocean begins to warm. The sensitivity to ε is larger than the sensi-269

tivity to γ in this regime because of the opposing effects of γ on the temperature increase,270

a discussed in the previous section.271

T1 is highly sensitive to the value of c for the first ten years, when ωc is large, but272

after this the contribution of uncertainty in c is negligible.273

Figure 2. Ratio of sensitivity of T1 to uncertainty in C to the sensitivity of T1 to uncertainty in F as a func-

tion of time (solid blue line), ratio of sensitivity to C0 to sensitivity to F (dashed blue line), ratio of sensitivity

to γ to sensitivity to F (solid yellow line), ratio of sensitivity to λ to sensitivity to F (dotted gray line) and

the ratio of sensitivity to ε to sensitivity to F (dot-dash pink line). These sensitivities are calculated from the

EBM calculations assuming the same relative uncertainty in each parameter.

274

275

276

277

278

4 Implications279

A first implication of this strong sensitivity of transient warming to F is that the280

most efficient way of narrowing the uncertainty in the TCR is developing better constraints281

on the raw radiative perturbation due to doubling atmospheric CO2 concentrations (Collins282

et al. [2006]; Soden et al. [2018]), as well as on the rapid adjustments of the stratosphere283
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and the troposphere which occur once CO2 concentrations are increased and that are in-284

cluded in F (Gregory and Webb [2008]; Zelinka et al. [2013]; Sherwood et al. [2015]).285

There are at least three additional implications of the strong sensitivity of transient286

warming to the radiative forcing. First, it implies a strong sensitivity of transient warming287

to the rate at which atmospheric CO2 concentrations increase, since ∆F = Fln(C/C0).288

The time-evolution of CO2 concentrations is determined by a combination of the rate at289

which carbon is emitted to the atmosphere and the carbon-cycle processes which control290

how efficiently carbon is removed from the atmosphere:291

C(t) = α(t) × E(t), (15)

where E is the emission of carbon to the atmosphere in a given year and α is the frac-292

tion of the emission which stays in the atmosphere. Hence even if the radiative forcing of293

doubling CO2 concentrations were perfectly known, uncertainties in the emission scenario294

and/or in the carbon-cycle feedbacks could overwhelm uncertainties in λ when making295

predictions of T1. Moreover, uncertainty in future aerosol forcing and in the forcings due296

to other greenhouse gases also contribute to uncertainty in the future radiative forcing.297

We note, however, that recent studies with earth system models suggest that the transient298

climate response to cumulative carbon emissions (TCRE = T1/E) is more sensitive to un-299

certainties in physical climate properties (F, λ, etc.) than to uncertainties in carbon cycle300

processes, implying that the uncertainty in α across models is small (Gillett et al. [2013];301

Williams et al. [2017]).302

Second, the time-scale dependence of the climate system’s warming, or cooling, sug-303

gests caution when extrapolating from short-lived climate perturbations, such as volcanic304

eruptions, to long-term perturbations. The response to the former is mostly determined305

by the upper ocean heat capacity and the forcing, so that a climate model’s skill in fit-306

ting such a perturbation is primarily due to its estimates of c and F (and we note the ad-307

ditional complication of forcings having different efficacies [Marvel et al., 2015]). Thus308

estimates of λ or of either of the ocean heat uptake parameters from a short-lived pertur-309

bation will reflect the estimates of c and F, and are unlikely to be representative of the310

climate system’s response to long-term perturbations.311

Finally, our results imply that uncertainties in the forcing can strongly affect attempts312

to tune climate models by fitting to the historical temperature record [Voosen, 2016]. By313

“tuning" we mean both cases in which model parameters are explicitly tweaked to better314
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fit the 20th century temperature record and cases in which a particular model is deemed315

to be of low quality because it does not fit the record well. We illustrate this through316

simulations of the 20th century with the two-box model, forcing it with an estimate of317

the total radiative forcing over the 20th century, ∆F (see Supplementary Text). We then318

vary the forcing by up to ±1 standard deviation of the CO2 forcing F. That is, we set319

∆F ′ = ∆F + βstd(F), where β is varied from -1 to 1 in increments of 0.1 (see Supple-320

mentary Text S2 and Figure 3a). For each forcing assumption, we set c, c0, γ and ε to321

their ensemble-mean values and perform simulations in which λ is varied in increments of322

0.01Wm−2K−1, searching for the value that gives the best fit to the 20th century tempera-323

ture record for the forcing estimate. Figure 3b shows how the optimal value of λ varies as324

a function of ∆F at the end of the 20th century in these simulations (circles), with a lin-325

ear least-squares regression indicating that a 1% change in the estimate of the net forcing326

resulting in a 1.88% change in the optimal value of λ.327

Figure 3. a) Net historical radiative forcing ∆F for the period 1900 to 2005 (black line) and estimates of

∆F with the CO2 forcing varied by up to ± one standard deviation from the ensemble-mean for each species

(orange shading). b) % change in the optimal value of λ as a function of the % change in ∆F (circles). The

solid line shows a linear-least squares fit, with the slope indicated in the lower right of the panel. Note that the

linearity does not hold for larger fractional changes in ∆F.

328

329

330

331

332

These calculations ignore, among other things, the different forcing efficacies of333

greenhouse gases (Hansen et al. [2005]; Kummer and Dessler [2014]; Marvel et al. [2015]),334

the question of the historical aerosol forcing [Stevens, 2015] and internal variability (Sil-335

vers et al. [2018]; Andrews et al. [2018]), but demonstrate the strong sensitivity of radiative336

feedbacks in models that are tuned by fitting to the historical temperature record to as-337

sumptions made about the forcing over the 20th century. If the same model were tuned338
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twice using historical forcing estimates that differed by 20%, the resulting values of λ339

would differ by 38%.340

5 Conclusion341

Using a combination of theory and analysis of data from the CMIP5 archive, we342

have shown here that transient warming, typically represented by the TCR or T140, is343

most sensitive to uncertainty in F, the radiative forcing from doubling CO2 concentrations,344

followed by uncertainty in the radiative feedbacks λ. This contrasts with the equilibrated345

warming (ECS), which is equally sensitive to uncertainty in F and in λ−1. This differ-346

ence reflects the role of ocean heat uptake in transient warming, as even if λ were zero347

the TCR would still be finite because of heat transfer to the deep ocean, whereas the ECS348

would be undefined. Our analysis has also shown that transient warming is more sensitive349

to the efficacy of ocean heat uptake (ε) than the rate of ocean heat uptake (γ), though the350

contributions of both of these to uncertainty in transient warming decreases after about 20351

years.352

These results suggest that more emphasis should be placed on constraining the un-353

certainty in F, as well as on constraining the historical forcing, as small changes in the as-354

sumed historical forcing can have large impacts on the radiative feedbacks in climate mod-355

els that are tuned using historical data. Furthermore, the sensitivity to F can also be taken356

to be a sensitivity to the carbon cycle feedbacks which convert CO2 emissions to atmo-357

spheric CO2 concentrations. Even if the radiative forcing of doubling CO2 concentrations358

were perfectly known, uncertainties in the emission scenario and/or in the carbon-cycle359

feedbacks could overwhelm uncertainties in λ.360

As has been recently noted, uncertainty in F could be substantially reduced if the361

number of radiative transfer parameterizations used in climate models was reduced, so362

that only parameterizations that have been thoroughly vetted against line-by-line calcula-363

tions were implemented in climate models [Soden et al., 2018]. Our results emphasize the364

urgency of this consolidation, as well as the importance of better constraining the rapid365

adjustments which take place as soon as CO2 concentrations are increased (particularly in366

the stratosphere [Chung and Soden, 2015]), better constraining the carbon-cycle feedbacks367

which determine how efficiently carbon is removed from the atmosphere, and better con-368
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straining the historical forcing, for which much of the uncertainty comes from uncertainty369

in the radiative effects of aerosols in the late 19th and early 20th centuries [Stevens, 2015].370

Climate models are increasingly including representations of the aerosol indirect371

effect, which can make their estimates of the historical aerosol forcing larger (i.e., more372

negative; see e.g., Carslaw et al. [2013]; Nazarenko et al. [2017]), and thus an increase in373

the spread in the modelled historical aerosol forcing across the next generation of CMIP374

models can be expected. Our analysis suggests an approximate 2:1 relationship between375

uncertainty in climate models’ net radiative feedback and uncertainty in the historical forc-376

ing, implying that the increased spread in models’ estimate of the historical aerosol forc-377

ing will substantially increase the model spread in radiative feedbacks.378
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