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ABSTRACT

Increases in the severity of heat stress extremes are potentially one of the

most impactful consequences of climate change, affecting human comfort,

productivity, health and mortality in many places on Earth. Heat stress results

from a combination of elevated temperature and humidity, but the relative con-

tributions each of these makes to heat stress changes have yet to be quantified.

Here, conditions on the baseline specific humidity are derived for when spe-

cific humidity changes will dominate heat stress changes (as measured using

the equivalent potential temperature, θE), and for when temperature changes

will dominate. Separate conditions are derived over ocean and over land, in

addition to a condition for when relative humidity changes dominate over the

temperature response at fixed relative humidity. These conditions are used to

interpret the θE responses in transient warming simulations with an ensemble

of models participating in the Sixth Climate Model Intercomparison Project.

The regional pattern of θE changes is shown to be largely determined by the

pattern of specific humidity changes, with the pattern of temperature changes

playing a secondary role. This holds whether considering changes in mean

summertime θE or in extreme (98th percentile) θE events. Uncertainty in

the response of specific humidity to warming is also shown to be the leading

source of uncertainty in the θE response at most land locations. These re-

sults demonstrate that understanding regional changes in specific humidity is

largely sufficient for understanding regional changes in heat stress.
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1. Introduction28

Changes in the severity and duration of extreme heat stress events are potentially one of the29

most severe impacts of climate change, affecting human health and productivity, and also damag-30

ing crops and ecosystems, among many other negative impacts (see Carleton and Hsiang (2016)31

for discussions of the negative social and economic impacts of extreme heat stress). For large32

enough global-mean warming, increases in heat stress may even make large parts of the tropics33

uninhabitable by humans (Sherwood and Huber 2010).34

Heat stress is a result of elevated temperature and moisture levels: high temperatures cause more35

heat to be input into the human body, while high levels of moisture limit the ability of the human36

body to cool through evaporation, the primary method by which it dissipates excess heat in warm37

climates. Understanding changes in heat stress in warmer climates thus requires understanding38

how local temperature and moisture extremes change, and the relative contributions each of these39

makes to the total change in heat stress.40

A warmer climate will have hotter warm-temperature extremes, but it is less clear how changes41

in moisture will affect heat stress. Simple conceptual models suggest that near-surface relative42

humidity decreases over land with warming (Byrne and O’Gorman 2016), and this is also ro-43

bustly seen in observations and in climate model simulations (Simmons et al. (2010); Byrne and44

O’Gorman (2013); Byrne and O’Gorman (2018)). In terms of specific humidity (qv), the Clausius-45

Clapeyron relation implies that qv will increase by roughly 7%/◦C over oceans (where relative46

humidity changes are small), but the larger relative humidity changes over land mean that qv will47

likely increase more slowly than 7%/◦C. Instead, changes in qv over land can be well approximated48

by assuming the same fractional changes in specific humidity over land as over the ocean source49

for the land moisture (Chadwick et al. 2016). But these conceptual models of how specific and50
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relative humidity change over land have yet to be connected to changes in heat stress over land,51

and it is also unclear whether relative or specific humidity is more relevant for quantifying heat52

stress changes.53

Uncertainty in the drivers of heat stress changes is partly a result of the variety of different54

heat stress metrics, which place differing emphases on the role of moisture (Buzan et al. (2015);55

Mora et al. (2017); Sherwood (2018)). In the present-day climate, some metrics, such as the wet-56

bulb temperature (Tw), suggest that low latitude heat stress extremes are dominated by moisture,57

while other metrics, such as the United States National Weather Service’s Heat Index, suggest that58

tropical and subtropical heat stress extremes are mostly due to temperature extremes (Buzan et al.59

(2015); Zhao et al. (2015)). Still other metrics, such as the simplified Wet Bulb Globe Temperature60

show roughly equal contributions from temperature and moisture (Buzan et al. 2015). At a regional61

scale, Raymond et al. (2017), using Tw as their metric for heat stress, found that moisture extremes62

tend to dominate heat stress extremes over North America in the present climate, while Wang63

et al. (2019) showed that the relative contributions of temperature and moisture to Tw extremes64

over China varies region-by-region.65

Changes in temperature and humidity co-vary in climate models, such that intermodel spread66

in the response of heat stress metrics such as Tw is smaller than if the intermodel spreads in the67

temperature and (relative or specific) humidity responses were independent (Fischer and Knutti68

(2012); Buzan and Huber (2020)). The co-variation of changes in temperature and moisture (con-69

ditioned on extreme heat stress events) is partly explained by the fact that extreme heat stress70

generally occurs in the summer, when the atmospheric state is largely determined by convection.71

Since most atmospheric profiles are close to moist convective neutrality in summer, this places72

bounds on the possible combinations of temperature, moisture and pressure that can be expected73

at upper percentile heat stress levels for a given climate state (Buzan and Huber (2020); Zhang74
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and Fueglistaler (2020)). The limited set of possible temperature and moisture values means, for75

example, that the intensification of extreme warm events is projected to be associated with a re-76

duction in the relative humidity associated with these events, leading to smaller increases in heat77

stress extremes than in absolute temperature extremes (Coffel et al. 2019). Although the allowable78

set changes with climate, constituting a “movable limit”, convective neutrality provides a use-79

ful first-order constraint on the allowable combinations of temperature and moisture for a given80

climate.81

A simple model of the response of heat stress extremes to warming was proposed by Willett82

and Sherwood (2012), who assumed a uniform shift of summertime Simplified Wet-bulb Globe83

Temperature (W ) and fixed relative humidity to predict changes in regional W extremes. While84

this model was able to produce a reasonable match to observed W trends over many land regions,85

the assumption of fixed relative humidity during extreme W events is questionable over land, and86

the model does not provide an explicit separation of the relative contributions of temperature and87

moisture. So the relative contributions of temperature and moisture to heat stress changes have88

still to be separated and quantified.89

In this study, conditions are derived on the baseline specific humidity for determining when90

changes in temperature or in specific humidity can be expected to dominate heat stress changes,91

with separate conditions over ocean and over land. A further condition is derived for when local92

relative humidity changes dominate heat stress changes over temperature changes at fixed relative93

humidity. The arguments focus on equivalent potential temperature (θE), because it is conserved94

under moist pseudoadiabatic ascent and because it is amenable to analysis. Using θE also empha-95

sizes specific humidity as the relevant moisture variable. Finally, other metrics of heat stress, such96

as Tw, scale with θE , or at least are strongly influenced by θE changes (see Appendix A1). The97

theory is shown to work well in climate model data, and a key finding is that the pattern of θE98
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changes is well correlated with the pattern of specific humidity changes, whether looking at sea-99

sonal changes or at extreme (98th percentile) events. Hence changes in specific humidity explain100

most of the regional variation in the response of θE to warming and, by implication, in the heat101

stress response.102

The theory is presented in the following section. Section 3 then investigates seasonal θE changes103

in 14 models participating in the Sixth Climate Model Intercomparison Project (CMIP6). Included104

in this section are investigations of the sources of uncertainty in θE changes, and of whether the105

baseline specific humidity can be used to develop emergent constraints on the response of seasonal-106

mean θE . In section 4 changes in extreme (98th percentile) θE events are discussed, before the107

study ends with conclusions in section 5.108

2. Theory109

a. Over ocean110

Equivalent potential temperature can be approximated as (Holton and Hakim 2013):111

θe ≈ θ exp
(

Lqv

cpTL

)
, (1)

where θ is potential temperature, L is the latent heat of warming, qv is the mixing ratio of water112

vapor (approximately equal to the specific humidity), cp is the heat capacity of dry air and TL is113

the temperature at the lifting condensation level. Fractional changes in near-surface equivalent114

potential temperature can be further approximated as115

∆θe

θe
≈ ∆θ

θ
+

L
cpT

∆qv, (2)

where the second-order TL term is ignored, and TL is approximated by the surface temperature T .116

(Note that the same final results can be obtained by considering absolute changes in θE , rather than117

fractional changes, but the derivation is slightly clearer when starting with the fractional change.)118
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If near-surface relative humidity is assumed to stay fixed with warming, then ∆qv
qv

≈ 0.07◦C−1
∆T ,119

and substitution into equation 2 gives120

∆θe

θe
≈ ∆θ

θ
+0.07◦C−1qv

L
cp

∆T
T

=
∆θ

θ
+174qv

∆T
T

, (3)

where qv denotes the baseline specific humidity. Lv is set to 2.5 ×106Jkg−1 and cp to121

1005Jkg−1◦C−1, so that 0.07◦C−1 × Lv/cp ≈ 174. Assuming fractional changes in surface po-122

tential temperature are roughly equal to fractional changes in surface temperature (i.e., that sur-123

face pressure changes are small, see Appendix A2), the moisture term will dominate the fractional124

change in θe wherever125

qv >
1

174
≈ 5.6gkg−1 = qv,0.

As shown in the following section, this is a low baseline specific humidity threshold, which is met126

throughout most of the tropics, subtropics and mid-latitudes in summer (see Figure 2d).127

For a change in relative humidity of ∆RH, equation 3 is modified to128

∆θe

θe
≈ ∆θ

θ
+

L
cpT

(0.07◦C−1qv∆T +∆RHq∗v)≈
∆θ

θ
+

qv

T

(
174∆T +2490◦C

∆RH
RH

)
. (4)

This gives the new approximate condition for moisture to dominate θE changes129

qv >

∣∣∣∣∣ 1
174+ 2490◦C

∆θ

∆RH
RH

∣∣∣∣∣= qv,0. (5)

For an initial relative humidity of 80%, a temperature increase of 2K and an increase in relative130

humidity of 1%:131

qv,0 =
1

189
≈ 5.3gkg−1.

Note that because ∆RH and ∆θ can have opposite signs, the two terms in the denominator of132

equation 5 can cancel, causing qv,0 to be undefined. The line of “critical” relative humidity and133
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temperature changes is defined by:134

∆RHc

∆θc
=− 174

2490◦C
RH ≈−0.07◦C−1RH. (6)

Panels a and b of Figure 1 show qv,0 for changes in relative humidity of -10% to +10% and135

temperature changes from -2◦C to +10◦C, at baseline relative humidities of 60% (panel a) and 80%136

(panel b). qv,0 is very large in a band which stretches from the upper left quadrant of the figure137

down to the lower right quadrant, for which ∆θ ≈ ∆θc and ∆RH ≈ ∆RHc. qv,0 decreases when138

moving away from this band, with the largest increases when increasing ∆RH at fixed ∆θ , and qv,0139

is small for temperature changes close to 0 and lower for a higher baseline relative humidity.140

b. Over land141

Moisture changes over land can be approximated by assuming fractional changes in specific142

humidity over land are equal to fractional change in the ocean source from which the land gets its143

moisture (Chadwick et al. (2016); Byrne and O’Gorman (2016)):144

∆qv,L ≈ γ∆qv,O, (7)

where γ = qv,L/qv,O. Byrne and O’Gorman (2016) suggest that changes in γ with warming are145

small, but this result came from an idealized climate model, and changes in vegetation or land-use146

could lead to large γ responses in the real world. Changes in γ can be incorporated into the theory147

presented below, but γ will be assumed fixed hereafter to simplify the analysis. Discrepancies148

between theory and model results in the following sections may be due to γ changes that are not149

accounted for by the theory.150
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Repeating the same procedure as before, and assuming fixed relative humidity over the ocean151

moisture source and fixed γ then gives:152

∆θe,L

θe,L
≈ ∆θL

θL
+174γqv,L

∆TO

TL
, (8)

and the moisture term dominates wherever153

qv,L >
A

174γ
. (9)

The amplification factor A = ∆TL/∆TO ≈ ∆θL/∆TO and is typically between 1 and 2 (Sutton et al.154

(2007); Byrne and O’Gorman (2013)), while a typical value of γ in climate model simulations155

is 0.7 (Byrne and O’Gorman 2016) so that A/γ ≈ 1.5-3. Hence the baseline specific humidity156

threshold may be several times higher over land than over ocean.157

For a change in relative humidity over the ocean moisture source, equation 9 becomes158

qv,L >

∣∣∣∣∣∣ A

γ

(
174+ 2490◦C

∆θO

∆RHO
RHO

)
∣∣∣∣∣∣ . (10)

The new threshold specific humidity values over land are plotted in panels c and d of Figure 1,159

again assuming baseline relative humidities of 60% (panel c) and 80% (panel d, note that these160

represent relative humidities over the oceanic moisture source), and taking γ = 0.7 and A = 1.5.161

qv,L,0 has the same structure as qv,O,0, but is larger for a given ∆θO and ∆RHO, and also decreases162

faster with ∆RHO at a fixed ∆θO.163

c. Changes in relative humidity164

Equations 5 and 10 provide conditions for when specific humidity changes are the largest con-165

tributor to θE changes, but relative humidity changes are expected to be small over most ocean166

locations, so that even if the specific humidity response contributes the most to ∆θE , the response167

is still driven by the temperature change. To separate the effects of relative humidity changes from168
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the temperature-driven contribution, equations 5 can be re-arranged to give a condition for when169

relative humidity changes dominate θE changes:170

∣∣∣∣∆RH
RH

∣∣∣∣> ∣∣∣∣∆θ

(
0.07◦C−1 +

1
2490◦C×qv

)∣∣∣∣ . (11)

For a baseline qv of 10gkg−1 this gives a fractional relative humidity (∆RH
RH ) change of 11%, or171

9% for a baseline of 20gkg−1. These are much larger than the relative humidity changes typically172

seen over oceans, as temperature changes are the main driver of ∆θE in these regions. The same173

condition can be used to determine whether local relative humidity changes (∆RHL) dominate the174

θE changes over land, rather than warming at fixed relative humidity; however, since non-local175

processes play an important role in determining land relative humidities, equation 10 may be more176

useful for understanding the drivers of θE changes over land.177

3. Seasonal θE Changes178

To investigate the relative importance of changes in temperature and in specific humidity for179

θE changes, data were taken from simulations with 14 climate models participating in CMIP6 in180

which CO2 concentrations were increased at 1%/year (see Table 1 for list of models). For each181

simulation, ∆θE , ∆θ and ∆qv were calculated by taking the difference between averages over years182

1-10 and over years 70-80. θE was estimated using equation 1, with temperature at the lifting183

condensation level calculated using equation 21 of Bolton (1980), and multi-model composites184

were generated by linearly interpolating all of the model responses onto the same 2.5◦ by 2.5◦185

grid. I focus here on the changes in boreal summer (June-July-August, JJA), because most of the186

world’s population lives in the Northern Hemisphere. Similar results are obtained in other seasons187

and in the annual-mean, with a notable exception discussed in section 3a. Results are also shown188
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at all latitudes, rather than only in the regions suceptible to extreme heat stress, to more clearly189

illustrate the different regimes identified by the theory of the previous section.190

The JJA multi-model composite clearly shows that changes in moisture dominate the pattern of191

changes in equivalent potential temperature (compare panels a and c of Figure 2). For example,192

there are large increases in θE over equatorial Africa, particularly along the coastline of the Bay193

of Guinea, and smaller increases over the Sahara, which match the pattern of specific humidity194

changes. By contrast, the potential temperature changes over Africa are much more uniform (Fig-195

ure 2b). Another notable example is in southwest North America, where there is a region of small196

qv and θE changes stretching southwest-northeast from Baja California into Arizona and New197

Mexico. This feature is not seen in the potential temperature field. ∆θE and ∆qv are also strongly198

correlated throughout the tropical and mid-latitude oceans.199

To quantify the correlations, Table 1 gives r2 values for pattern correlations between ∆θE and200

∆qv, and between ∆θE and ∆θ . ∆θE and ∆qv are very highly correlated in the multi-model com-201

posite (r2 = 0.79), and the average r2 value across the individual models is 0.76. By contrast,202

the correlation between ∆θE and ∆θ is weak (r2 = 0.07) in the multimodel composite, though the203

correlation with ∆θ tends to be higher in individual models (average r2 = 0.31). Similar results are204

obtained when the correlations are taken over land areas only (columns 5 and 6 of Table 1), but the205

correlations with ∆qv,L are generally higher and the correlations with ∆θL generally lower. Taking206

correlations over tropical regiosn only (30◦S to 30◦N) further increases the correlations with ∆qv207

and reduces the correlations with ∆θ (not shown).208

Figure 2d shows the multi-model composite of qv averaged over years 1-10 of the simulations,209

which is used as the baseline specific humidity. This is well correlated with ∆θE in the multi-model210

composite (r2 = 0.62), but the correlation is lower in individual models, roughly similar to the211
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correlation with ∆θ (average r2 = 0.33). Considering land areas only improves these correlations212

(r2 = 0.73 in the multi-model composite and r2 averaged over all models = 0.38).213

The magenta contours in Figure 2d indicate the 5.6gkg−1 isopleth, for which moisture changes214

will dominate θE changes over ocean if relative humidity is fixed. The areas with baseline specific215

humidities below this threshold include high latitude oceans and desert regions (the Sahara, Arabia,216

the Kalahari, etc.). For example, the strong warming seen in the Southern Ocean leads to large217

θE changes there, despite small changes in qv (Figure 2). Over land the temperature-dominated218

areas will be larger than the area enclosed by the magenta contours because the specific humidity219

threshold is larger.220

To quantify the relative contributions of temperature and moisture, Figure 3a plots the ratio221

Q = Lv∆qv/cp∆θ for the multi-model JJA composite. Over oceans there is close agreement with222

the theory, as the red contours in Figure 3a, which denote where Q = 1, closely match the ma-223

genta contours in Figure 2d. Over land, Q is less than one over desert regions, with a larger extent224

than predicted from the magenta contours in Figure 2d, and is also less than one over much of225

Europe and central Asia, the southern Amazon and central India. Experimenting with other con-226

tour levels indicates that over land qv,0 varies between 5-10gkg−1 (not shown). For example, the227

North Atlantic experiences the slowest warming of any region, while Europe warms at a similar228

rate to other land regions at the same latitude (Figure 2b). This suggests that the amplification229

factor is large over Europe, and temperature dominates the θE response even though the baseline230

specific humidity is relatively high (∼9gkg−1). By contrast, over Australia, southern Africa and231

the southern part of South America the Q = 1 contours closely follow the qv,0 =5.6gkg−1 contours.232

In summary, although temperature changes dominate the local changes in JJA θE over certain233

land regions, particularly over Eurasia, moisture changes still dominate the pattern of ∆θE . This234

is because of the much larger regional variation of ∆qv (compare panels b and c of Figure 2), so235
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that changes in θE can be approximated as coming from a spatially-homogeneous distribution of236

potential temperature changes and a spatially-heterogenous pattern of specific humidity changes:237

∆θE

θE
(x,y)≈ ∆θ

θ
+

L
cpT

∆qv(x,y). (12)

The greater spatial variation of ∆qv reflects the much larger range of fractional changes in qv238

compared to fractional changes in θ : at constant relative humidity a warming of 1◦C leads to a 7%239

increase in specific humidity, but only a ∼0.33%/◦C (= 1/300K) increase in temperature. When240

relative humidity changes are accounted for, fractional changes in specific humidity can vary from241

∼0%/◦C to more than 7%/◦C, whereas the largest fractional changes in temperature will always be242

less than 1%/◦C. Even over the oceans, where relative humidity changes are small and temperature243

is the main driver of the θE response (equation 11), changes in relative humidity are sufficient for244

the pattern of ∆θE to be more similar to the pattern of ∆qv than the pattern of ∆θ .245

a. Arctic amplification246

The previous section focused on θE changes in JJA because most of the land and people on Earth247

are in the Northern Hemisphere, so this is where the worst impacts of excess heat stress will be248

experienced. Similar results are found in other seasons – the pattern of ∆θE primarily determined249

by the pattern of ∆qv – with the notable exception of boreal winter (December-January-February,250

DJF; Figure 4). In this season the strong Arctic amplification of warming, combined with the251

dryness of high latitude winter climates, means that ∆θE is mostly determined by ∆θ at high252

Northern latitudes and over much of the Northern Hemisphere continents (North America and253

Eurasia). The pattern correlations between ∆θE and ∆θ are higher in DJF, while the correlation254

between ∆θE and ∆qv are lower (not shown). Heat stress extremes are very unlikely to occur in255

these regions during boreal winter, but this example illustrates that ∆θ can play a more important256
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role in determining the pattern of ∆θE in cold, dry climates, for which the larger absolute changes257

in θ overcome the larger fractional changes in qv.258

Further south, the θE changes in sub-Saharan Africa and South America are primarily dominated259

by moisture, and in general the 5.6gkg−1 threshold accurately separates regions dominated by260

temperature changes and regions dominated by moisture changes, even over land (compare Figure261

3b and Figure 4d).262

b. Sources of uncertainty in ∆θE263

Uncertainty (intermodel spread) in ∆θE is due to uncertainties in ∆θ and ∆qv. To quantify the264

contributions of ∆θ and ∆qv to uncertainty in ∆θE , Figure 5 shows r2 values for correlations across265

models between ∆θE and ∆θ at each grid point (left column) and for correlations between ∆θE266

and ∆qv at each grid point (right column). Results are now shown for all seasons, rather than for267

JJA only, and note that because of correlations between ∆θ and ∆qv, the r2 values at individual268

grid points can sum to greater than 1. For example, at most ocean locations the r2 values for both269

∆θ and ∆qv are close to 1, as relative humidity changes are small and the temperature response is270

main driver of the qv and θE responses (though ∆θ is less well correlated across models with ∆θE271

over the equatorial Pacific, implying notable relative humidity changes).272

Comparing the left and right columns of Figure 5 shows that at most tropical land locations ∆qv273

contributes to much more uncertainty in ∆θE than does uncertainty in ∆θ . This includes much of274

South America, sub-Saharan Africa, India, Southeast Asia and Australia. Exceptions include the275

northern Amazon in DJF (the dry season), the Sahara throughout the year, and southern Australia276

in SON, where ∆qv and ∆θ contribute roughly equal amounts of uncertainty.277

At higher latitudes, intermodel variations in ∆θ and ∆qv both tend to be well correlated with278

intermodel variations in ∆θE over North America and Eurasia, implying that ∆θ and ∆qv are279
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also well correlated in these regions. One exception is Europe and Central Asia in JJA, when280

the r2 values for ∆θ and ∆qv are both near 0.5, suggesting approximately equal contributions to281

uncertainty in ∆θE in this season. ∆qv is also poorly correlated with ∆θE over the Tibetan plateau282

in boreal winter (Figure 5h).283

c. Potential for emergent constraints284

The correlations between baseline specific humidity and θE changes seen in Figure 2 and quanti-285

fied in Table 1 hint at the potential for emergent constraints between present-day specific humidity286

and changes in seasonal-mean θE with warming. To investigate this, r2 values were calculated for287

correlations across models between the baseline qv and ∆θE (Figure 6). Values are only shown288

over land for ease of presentation and because these regions are of most societal relevance.289

In JJA, the baseline specific humidity is poorly correlated with ∆θE at most locations (Figure 6a),290

though there are patches of high r2 values in Equatorial Africa, western South America, parts of291

the Amazon and over Pakistan. The results of correlations for other seasons are shown in the292

rest of the Figure, and are similarly patchy, with few large regions of high r2 values. Sub-Saharan293

Africa and South America do have patches of high r2 values in DJF and, interestingly, the warming294

over much of North America and Eurasia is also well correlated with the baseline qv in DJF. This295

suggests that the amplitude of polar amplification could be constrained by the present-day specific296

humidity, though this has not been investigated further.297

Similar results are obtained when ∆θE is divided by the global-mean surface warming (∆θ̄ or298

∆T̄ ) in each model or by local warming (∆θ(x,y)). Hence the baseline specific humidity seems299

to be a poor predictor of future θE changes over land. Intermodel variations in the land warming300

amplification factor (A), in the ratio of land specific humidity to ocean specific humidity (γ), in301

∆A and ∆γ , and in relative humidity changes could all weaken the connection between baseline302
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specific humidity and ∆θE in models. At fixed relative humidity, the ratio of the fractional change303

in θE to the fractional change in θ is proportional to qv:304 (
∆θE

θE

)
/

(
∆θ

θ

)
≈ 1+174qv.

This could be used to constrain ∆θE over ocean regions, given local fractional temperature305

changes, but will not hold over land regions where relative humidity changes are large.306

4. Changes in Extreme Events307

Changes in extreme θE events are potentially as important as seasonal-mean changes, but the308

combination of factors driving changes in extreme θE events is likely to be more complex. For309

example, the assumption that fractional changes in moisture over land are equal to the fractional310

changes in moisture over the relevant oceanic moisture sources may not hold on the synoptic311

time-scales of extreme heatwaves. Furthermore, soil moisture feedbacks, which are ignored in312

the theory of section 2, often play a key role in extreme heat stress events (e.g., Diffenbaugh313

et al. (2007); Donat et al. (2017)). Over oceans, the relative humidities associated with high θE314

events may also have much larger responses to warming than seasonal-mean relative humidities.315

Nevertheless, the rapid increase of specific humidity with temperature, particularly at warmer316

temperatures, suggests that specific humidity changes are also likely to be the main driver of317

extreme θE changes.318

To investigate the roles of temperature and moisture in changing extreme θE events, the analysis319

of the previous section was repeated for changes in the 98th percentile1 of the annual distribution320

of daily θE (∆θE,98), with ∆θ and ∆qv conditioned on these extreme events (∆θ98 and ∆qv,98,321

1The 98th percentile was chosen as a compromise between capturing “extreme” events and statistical robustness. Similar results are obtained

with other percentiles.
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respectively) 2. Comparing Figure 2a and Figure 7a, the magnitudes of ∆θE,98 are comparable to322

the magnitudes of JJA ∆θE , but ∆θE,98 is more spatially-uniform, with similar increases over most323

land locations, whereas JJA ∆θE is more tropically amplified. There is also less of a land-ocean324

contrast at high Northern latitudes for ∆θE,98.325

Just as for the seasonal-mean changes, the pattern of ∆θE,98 closely resembles the pattern of326

moisture changes (Figure 7c). For example, the largest increases in ∆θE,98 and in ∆qv,98 over327

North America are in the Hudson Bay region, with the smallest increases over the southwestern328

United States and northwestern Mexico. ∆θ98 is more uniform across North America (Figure 7b),329

and generally has a smaller magnitude than ∆qv,98. Table 2 confirms this qualitative picture, as330

∆θE,98 is very highly correlated with ∆qv,98 (r2 = 0.94 in the multi-model composite, 0.90 in the331

multi-model mean), and less well correlated with ∆θ98 (r2 = 0.30 in the composite, 0.37 in the332

multi-model mean). Correlations taken over land regions only are similar for ∆qv,98, but lower for333

∆θ98.334

∆θE,98 is also well correlated with the baseline qv,98 (qv conditioned on θE,98 and averaged over335

years 1-10) in the multi-model composite (Figure 7d), with an r2 of 0.65. The correlations are336

generally lower for individual models (multi-model mean r2 = 0.47), and are similar when taken337

over land regions only. As with the seasonal-mean θE changes, correlations across models between338

qv,98 and ∆θE,98 indicate that the conditional baseline specific humidity is a poor constraint on339

changes in extreme heat stress events at most land locations (not shown).340

Even more than the changes in seasonal ∆θE , moisture dominates the response of extreme θE341

events, so that Q98 = Lv∆qv,98/cp∆θ98 > 1 at almost all locations in the tropics, subtropics and342

mid-latitudes (Figure 8). Exceptions are the Iberian Peninsula, parts of North Africa, Central Asia343

2Daily surface pressure values were not available for any of the models at the time of the analysis, so the assumption that changes in surface

pressure, conditioned on the 98th percentile of daily θE , are small has not been verified.
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and the southern tip of South America. Extreme θE events in these regions are all associated with344

specific humidities <10gkg−1 in the baseline climate (Figure 7d). Q98 is also less than one at345

high latitudes, where the magenta contour in Figure 7d separates regions of qv,98 > 5.6gkg−1 from346

regions where qv,98 < 5.6gkg−1, and closely matches the Q = 1 contour in Figure 8.347

To demonstrate the importance of specific humidity changes for extreme events in another way,348

Figure 9 plots the conditional specific humidity and temperature changes for locations over land349

where the 98th percentile of θE in the control climate is above 308K (≈35◦C) in the 14 CMIP6350

models. The spread in the conditional specific humidity changes is larger than the spread in the351

conditional temperature changes in almost all of the models, with the exception of some gridpoints352

in the CanESM5 model. Inspection of the maps of ∆θE,98, ∆θ98 and ∆qv,98 for this model shows353

that these gridpoints lie over the Tibetan plateau, which experiences large increases in warm, dry354

events in CanESM5. Otherwise, changes in the very warmest θE events are associated in most355

models with large qv,98 responses. For these extreme heat stress events – at or above the limit of356

what humans can tolerate – the specific humidity response is again the leading factor driving the357

response to climate change.358

Putting this together, the changes in θE,98 can also be approximated as coming from a spatially-359

homogeneous distribution of potential temperature changes and a spatially-heterogenous pattern360

of specific humidity changes:361

∆θE,98

θE,98
(x,y)≈ ∆θ98

θ98
+

L
cpT98

∆qv,98(x,y), (13)

so that constraining the regional distribution of extreme θE events largely comes down to con-362

straining the changes in the specific humidity associated with these events.363
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a. Sources of uncertainty in ∆θE,98364

Specific humidity changes are the primary control on the pattern ∆θE,98, suggesting that they365

also dominate the intermodel spread, or uncertainty, in ∆θE,98. Figure 10 repeats the calculations366

of Figure 5, but now shows correlations across models between ∆θE,98 and ∆θ98 and between367

∆θE,98 and ∆qv,98. This confirms that ∆qv,98 explains a majority of the intermodel spread in ∆θE,98368

over most land locations, with high r2 values for the correlations with ∆qv,98 and low r2 values for369

the correlations with ∆θ98. The most notable exception is parts of the Middle East and Central370

Asia, where the r2 values for both ∆qv,98 and ∆θ98 are between 0.4 and 0.6. This is also where371

Q98 is less than 1 (Figure 8). Other exceptions include northeastern South America, where the r2
372

values for both quantities are close to 1, and the Tibetan plateau, where the correlation with ∆θ98373

is high, mostly due to the CanESM5 model.374

Over oceans, the potential temperature changes and the specific humidity changes both generally375

have r2 values close to 1, implying small relative humidity changes during extreme events, as376

temperature is the main driver of θE,98 changes (equation 11). The exception is parts of the tropical377

and subtropical oceans, where the correlations with ∆θ98 are lower (r2 of 0.6-0.8), again implying378

notable relative humidity changes.379

5. Conclusion380

There is growing recognition that changes in heat stress could be one of the most devastating381

consequences of future climate change. Predicting these changes requires climate models that can382

make accurate prediction of how the many factors involved in extreme heat stress events respond to383

warming, while also making predictions at the fine scales required to take preventative action. But384

improved conceptual understanding of the factors governing heat stress changes is also required,385

to guide the improvement of models and to ensure trust in model results.386
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In this study, simple conditions on the baseline specific humidity have been derived for when387

specific humidity can be expected to dominate changes in equivalent potential temperature (∆θE),388

with different conditions over ocean and over land. A condition was also derived for when changes389

in relative humidity dominate the response of θE over the response to warming at fixed relative390

humidity. These conditions have guided an analysis of θE changes in transient warming simula-391

tions with 14 CMIP6 models. Specific humidity changes are found to be the primary control on392

the pattern of θE changes, whether considering seasonal-mean changes or changes in the 98th per-393

centile of θE , so that in both cases the response of θE,98 can be roughly approximated as coming394

from a spatially-uniform (i.e., global-mean) potential temperature change and a spatially-varying395

pattern of specific humidity changes. Specific humidity changes also tend to dominate the inter-396

model spread, or uncertainty, in ∆θE over land, particularly for extreme events. Over the oceans,397

where relative humidity changes are small, the temperature response is the main control on the398

responses of qv and θE , though relative humidity changes are still large enough for ∆qv to be more399

highly correlated with ∆θE , particularly in the tropics and subtropics. In summary, improving our400

understanding of the regional pattern of θE changes and reducing the intermodel spread in θE ,401

especially over land, can both be largely achieved by understanding and constraining the response402

of specific humidity to warming.403

The key reason for the dominance of specific humidity in θE changes is its rapid increase with404

temperature. Whereas temperature increases by ∼0.3%/◦C (≈ 1/300), specific humidity increases405

by ∼7%/◦C at fixed relative humidity. Changes in relative humidity, driven by dynamics, soil406

moisture feedbacks or land-use changes, can cause the local response of specific humidity to be407

as low as 0%/◦C or to increase faster than the Clausius-Clapeyron scaling. Only in cold, dry408

climates are the larger fractional increases of specific humidity, and the larger spatial variation in409
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these increases, overwhelmed by temperature increases, so that the pattern of ∆θ sets the pattern410

of ∆θE .411

The scalings derived in section 2 imply that ∆θE is partly determined by the baseline specific412

humidity, qv, particularly over oceans. Pattern correlations confirm that qv and ∆θE are related, for413

both seasonal-mean changes and for extreme events, though the correlations tend to be worse in414

individual models than in the multi-model composite. The relationship between qv and ∆θE hints415

at the potential for emergent constraints, in which present-day specific humidity values are used416

to constrain future changes in heat stress, but qv is found to be a poor predictor for changes in417

∆θE over land in the models analyzed here. Intermodel variations in relative humidity, in the land418

warming amplification factor, in the ratio of specific humidity over ocean to specific humidity over419

land, and in the responses of these to warming, could obscure the connection between qv and ∆θE420

across models.421

More detailed analysis is required to fully understand and constrain the pattern of heat stress422

changes; to understand local relative humidity changes, how surface processes, such as soil mois-423

ture feedbacks, affect local moisture levels, and how the dynamics of synoptic-scale weather events424

responsible for heat stress extremes change with warming. But the analysis presented above pro-425

vides a starting point for choosing what to focus on in future investigations. At most locations426

over land, contraining how the specific humidity during extreme heat stress events respond to427

global-mean warming is the most important step towards contraining future heat stress changes.428

Especially for extreme events, the local temperature response plays a secondary role in heat stress429

changes, and can essentially be set to a single, global-mean value. To put this another way, in430

most places changes in heat stress will be determined by changes in the body’s ability to dissipate431

excess heat through evaporation, rather than by changes in the amount of heat input into the body.432
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APPENDIX433

A1. Other Heat Stress Metrics434

This appendix discusses several other common heat stress metrics whose changes scale similarly435

to the equivalent potential temperature, θE . First, the wet bulb temperature (Tw) is the temperature436

for a given moist enthalpy at which the relative humidity is 100%:437

h = cpT +Lqv = cPTw +Lq∗v(Tw), (A1)

where q∗v is the saturation specific humidity. Hence there is a one-to-one correspondance between438

moist enthalpy and Tw and, assuming surface pressure changes are small, between ∆Tw and ∆θE .439

Next, the Wet Bulb Globe Temperature (WBGT ) is given by (Willett and Sherwood 2012):440

WBGT = 0.7Tw +0.2Tg +0.1T (A2)

where Tg is the black globe temperature: the temperature of a sensor placed in the center of a black441

globe, so that the temperature of the sensor is only determined by the radiation absorbed by the442

black globe. Thus, ∆WBGT is mostly set by ∆Tw, though changes in the black globe temperature443

and in air temperature also contribute, so that specific humidity is relatively less important than444

for ∆Tw.445

Finally, the Simplified Wet Bulb Globe Temperature (W ) is defined as (Willett and Sherwood446

2012):447

W = 0.567T +0.393e+3.94, (A3)

where e is the vapor pressure in hPa. Substituting qv ≈ 0.622 e
Ps

, where Ps is surface pressure in448

hPa, and assuming a fixed surface pressure of 1000hPa, the change in W is:449

∆W ≈ 0.567∆T +622∆qv. (A4)
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At fixed relative humidity ∆qv ≈ 0.07qv∆T , and450

∆W ≈ 0.567∆T +43.54qv∆T. (A5)

Hence at fixed relative humidity moisture changes dominate changes in W wherever the baseline451

specific humidity452

qv >
1

77
≈ 13gkg−1. (A6)

This condition can be adjusted for relative humidity changes and for land conditions following the453

same procedure as sections 2b and 2c. Higher baseline specific humidity values are thus required454

for moisture to dominate changes in W .455

A2. Surface Pressure Changes456

The multi-model composite changes in JJA surface pressure are shown in Figure 11. The largest457

changes in surface pressure are located off the coast of Antarctica, with values of up to ∼0.7hPa.458

Given typical surface pressures of O(1000hPa), these represent fractional changes of less than459

0.1%. Similar orders of magnitude are obtained for individual models, in other seasons and in the460

annual-mean.461
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FIG. 1. a) The baseline specific humidity qv,0 above which moisture changes dominate changes in θE over

ocean as a function of ∆θ and ∆RH, for a baseline relative humidity of 60%. The values of qv,0 are calculated

using equation 5. b) Same as a), but assuming a baseline relative humidity of 80%. c) Same as panel a), but

showing the baseline specific humidity qv,0 over land (i.e., equation 10), assuming a land warming amplification

factor A of 1.5. d) Same as panel c), but assuming a baseline relative humidity of 80%. In all panels, the gray

shading denotes values of qv,0 outside the colorbar scale.
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FIG. 2. a) Composite changes in JJA θE between years 71-80 and years 1-10 in transient warming simulations

with 14 CMIP6 models. b) Composite changes in JJA θ . c) Composite changes in JJA qv, mulitplied by Lv
cp

. d)

Composite of JJA qv, averaged over years 1 - 10 of the simulations. The magenta contours show the 5.6gkg−1

isopleth.
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FIG. 3. a) The ratio Q = Lv∆qv/cp∆θ for the multi-model composite response of the 14 CMIP6 models. b)

Same as panel a) but for DJF.
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FIG. 4. a) Composite changes in DJF θE between years 71-80 and years 1-10 in transient warming simulations

with 14 CMIP6 models. b) Composite changes in DJF θ . c) Composite changes in DJF qv, mulitplied by Lv
cp

. d)

Composite of DJF qv, averaged over years 1 - 10 of the simulations. The magenta contours show the 5.6gkg−1

isopleth. In all panels, the gray shading denotes values outside the colorbar scales.
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a) JJA b) Lv qv / cp
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FIG. 5. a) r2 values for correlations across the CMIP6 models between JJA ∆θE and JJA ∆θ . b) r2 values

for correlations across the CMIP6 models between JJA ∆θE and JJA ∆qv. c) Same as panel a) but for MAM. d)

Same as panel b) but for MAM. e) Same as panel a) but for SON. f) Same as panel b) but for SON. g) Same as

panel a) but for DJF. h) Same as panel b) but for DJF.
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FIG. 6. a) r2 values for correlations across the CMIP6 models between baseline JJA qv (i.e., averaged over

years 1-10) and JJA ∆θE . Only values over land, with r2 > 0.1, are plotted. b) but for MAM. c) Same as panel

a) but for SON. d) Same as panel a) but for DJF values.
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FIG. 7. a) Composite changes in the 98th percentile of daily θE between years 71-80 and years 1-10 in

transient warming simulations with 14 CMIP6 models. b) Composite changes in θ , conditioned on the 98th

percentile of θE . c) Composite changes in qv, multiplied by Lv
cp

and conditioned on the 98th percentile of θE . d)

Baseline qv, conditioned on the 98th percentile of θE , averaged over years 1-10 of the simulations. The magenta

contours show the 5.6gkg−1 isopleth.
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FIG. 8. The ratio Q98 = Lv∆qv,98/cp∆θ98 for the multi-model composite response of the 14 CMIP6 models.
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FIG. 9. Scatter plots for the 14 CMIP6 models of changes in specific humidity (Lv∆qv,98/cp) versus changes

in temperature (∆θ98) associated with 98th percentile θE events that are ≥308K. The markers are colored by

their associated θE,98 value in the baseline climate.
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FIG. 10. a) r2 values for correlations across the CMIP6 models between ∆θE,98 and ∆θ98. b) r2 values for

correlations across the CMIP6 models between ∆θE,98 and ∆qv,98.
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FIG. 11. Composite changes in JJA surface pressure between years 71-80 and years 1-10 in transient warming

simulations with 14 CMIP6 models.
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